

SK-A100 产品手册 ProductManuals

Version1.0中英文版 CN&EN

上海申稷光电科技有限公司 Shanghai Senky Photoelectric Technology Co.LTD

目录

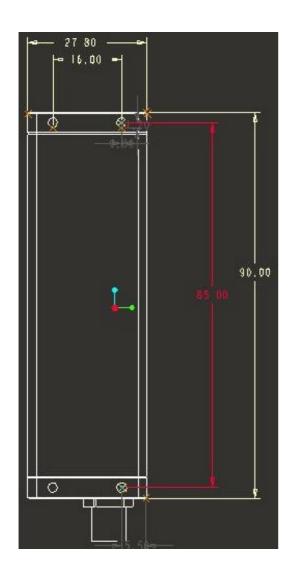
— 、	SK-A100产品概述Productoverview	3
	性能参数TechnicalParameter	
	规格尺寸	
	接口	
五、	通讯协议与输出格式	7
	注意事项MattersNeedingAttention	
+	联系我们Contact us	10
U,	4/x/1/x/ 1Contact us	1/

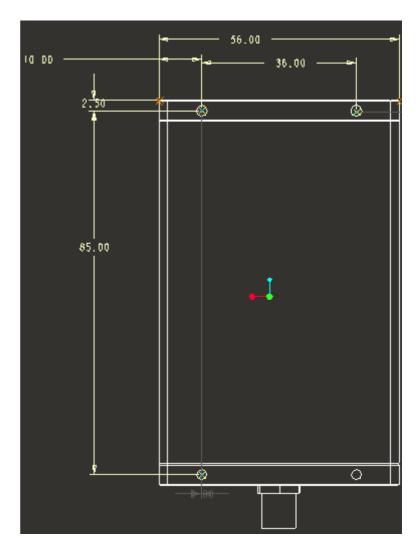
一、SK-A100产品概述 Product overview

SK-A100 激光测距模块为我司研发的高精度测距模块,具有测量精度高,测量速度快,安装操作简单等特点。已广泛用于家装测量,工业控制等各领域。模块安装和使用前请仔细阅读安装和操作相关章节,防止损坏模块。

产品特点:

- > 体积小巧
- ▶ 重量轻
- ▶ 测距距离远,可达 100m
- ▶ 精度高,最高可达 1mm
- ▶ 耐高低温-30~+60℃




二、性能参数 Technical Parameter

型号 model	SK-A100
室内量程 Indoor range	0.03-100m
室外量程 Outdoor range	0.03-30m
输出频率 output frequency	2Hz
绝对精度 Absolute accuracy	±2mm
分辨率 resolution	1mm
盲区 Blind area	3cm
光源 Light	635nm,<1mW,红色激光,二类安全激光
通讯接口 Communication interface	4~20mA,RS485
工作温度 Operating temperature	-30℃+60℃(高低温款)
工作电压 Working voltage	DC+24V
工作电流 Working current	20mA
体积 volume	28*56*90mm

三、规格尺寸

四、接口

4.1 RS485 输出接口

线色	红色	黑色	黄色	白色
定义	电源正	电源地/信号地	485 B	485 A
注释	DC+24V			

4.2 4-20mA 输出接口

线色	红色	黑色	黄色	白色
定义	电源正	电源地/信号地	电流正	电流负
注释	DC+24V			

五、通讯协议与输出格式

5.1 端口配置USARTInterface

波特率:19200 bps

9600 bps

起始位: 1 bit 数据位: 8 bits 停止位: 1 bit 检验位: 无 流控制: 无

5.2 控制流字符Controlflowchar

所有的通信命令都由主板发出,激光测距模块起辅助作用回答主机的请求。USART 的问答流程如图 5-1 所示。

激光模块 主控制板 S_{t0} =+0ms M_{t0} ==0ms 断电 Init.State,Pullup PWEEN&RST Power down M_{t1}=+100ms S_{t1}=+100mS 自动波特率由 Tx 单一 0*55 上电和引导成功 AUTO Baudrate by Tx single 0*55 Power up&boot succecc S_{t2} =+1mS M_{t2} =+1ms 自封和回复地址 检测目标模块地址字节 Do auto baudrate&reply address Poll target module address byte M_{t3} =+0ms S_{t3} =+0mS Tx 测量命令帧 等待主命令 Tx measure command frame Waiting command from Master M_{t4} =+Xms S_{t4} =+XmS 接收命令并测量 检测结果或状态返回 Poll measure result or ststus return Command received and do M_{t5} =+0ms S_{t5} =+0mS 测量结果过程等 Tx 测量结果或报告 Do measure result process etc Tx measuring result or report atatus M_{t6} =+0ms S_{t6} =+0mS 回到 mt3 或电源关闭模块 回到S_{t3} Go back to Mt3or power off module Go back to St3 图 5-1 控制流

5.3 命令CommandFrame

命令框架可以由 6 个部分组成, 如表 5-1 所示。

表 5-1

字节	0	1		2	3	4	5	6	7	8
Bits	[7: 0]	[7]	[6: 0]	[7: 0]						
名 称	首	等 级	地 址	登	登记		计算	有效	字节	校 验
数 据	OxA A	0	0x5 1	0x0 0	0x2 0	0x0 0	0x0 1	0x0 0	0x0 0	0x7 2

表 5-1 显示了从主服务器到从服务器的单次测量请求命令。在这个命令框架中:

请求帧总是从固定头字节 0xAA 开始,这个字节在出错时也可以是 0xEE 从机到主机的应答框,请参阅 5.4.16 节错误应答框:

R/W 表示位, 0:主写从, 1:主读从

从地址是 0x51, 地址只有 7 位, 所以地址是从 0x00 到 0x7F, 0x00 是在主问题模块地址更改命令之前的默认地址, 0x7F 是广播地址为一主多从网络预留的地址;

从寄存器是 0x0020 (REG MEA MODE, 参见寄存器列表 6.3.1 了解更多细节);

写入寄存器 0x0020 的有效负载数据计数为 0x0001, 当 R/W = 1 时,本节可能不存在,主机向从机读:

寄存器 0x0020 的单个数据写为 0x0000, 当 R/W=1 时,本节可能不存在,主机向从机读;帧校验和是 0x72,校验和=地址字节+寄存器字节+有效负载计数字节+所有有效负载字节,字节溢出忽略;

5.3.1 控制寄存器

序号	寄存器	命名	功能
1	0x0000	REG_ERR_CODE	系统状态代码
2	0x0006	REG_BAT_VLTG	工作电压
3	0x0010	REG_ADDRESS	模块地址
4	0x0012	REG_OFFSET	模块测量结果偏 移
5	0x0020	REG_MEA_START	开始测量
6	0x0022	REG_MEA_RESULT	测量结果
7	0x01BE	REG_CTRL_LD	激光二极管的控 制

5.4 命令Commands

5.4.1 读取模块最新状态

表 5 - 3 读取模块状态

字节	0	1	2 3		4
名称	首	地址	登记		校验
数据	0xAA	0x80	0x00	0x00	0x80

类型:读取命令

从地址:0x00

注册地址:0x0000

功能:主读取前一条命令执行后模块的状态;

从机回复:

表5-4应答读取模块状态

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	登记		有效计	算	有效字	节	校验
数据	0xAA	0x80	0x00	0x00	0x00	0x01	0xYY	0xZZ	sum

Sum 是校验位,校验算法为前面所有字节除了首字节 AA 之外十六进制的和。字节 0xZZ 是从服务器返回的状态码,具体见状态码表 6-24。

5.4.2 读取硬件版本号

表 5-5 读 HW 版本

字节	0	1	2 3		4
名称	首	地址	登记		校验
数据	0xAA	0x80	0x00	0x0A	0x8A

类型:读取命令 注册地址:0x000A1

功能:主读出模块的 HW 版本号;

从机回复:ead 命令

表 5 - 6 读HW 版本

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	登	登记 有效计算 有效字节		校验			
数据	0xAA	0x80	0x00	0x0A	0x00	0x01	0xVV	0xYY	sum

HW 版本号是 OxVVYY。

5.4.3 读取软件版本号

表 5-7 读HW 版本

字节	0	1	2 3		4
名称	首	地址	登记		校验
数据	0xAA	0x80	0x00	0x0C	0x8C

类型:读取命令

从地址:0x00 注册地址:0x000C

功能:主读出模块的 SW 版本号;

从机回复:

表 5-8 回复阅读 SW 版本

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	登记		有效计算		有效	字节	校验
数据	0xAA	0x80	0x00	0x0C	0x00	0x01	0xVV	0xYY	sum

SW 版本号是 OxVVYY。

5.4.4 读取模块序列号

表 5-9 读串行版本

字节	0	1	2	3	4
名称	首	地址	登记		校验
数据	0xAA	0x80	0x00	0x0E	0x8E

类型:读取命令 从地址:0x00 注册地址:0x000E

功能:主读模块的序列号; 从机回复:ead 串行版本

表 5 - 10 回读序列号

			**						
字节	0	1	2	3	4	5	6	7	8
名称	首	地址	登记		有效计算		有效	校验	
数据	0xAA	0x80	0x00	0x0E	0x00	0x01	0xSS	0xNN	sum

HW 版本号是 0xSSNN。

5.4.5 读取输入电压

表 5-11 寸 cmd。读 HW 版本

字节	0	1	2	3	4
名称	首	地址	登	记	校验
数据	0xAA	0x80	0x00	0x06	0x86

类型:读取命令 从地址:0x00 注册地址:0x0006

功能:用 BCD 编码读出模块 mV 输入电压;

从机回复:

表 6 - 12 回复阅读HW 版本

	//CT									
字节	0	1	2	3	4	5	6	7	8	
名称	首	地址	登记		有效计算		有效与	校验		
数据	0xAA	0x80	0x00	0x06	0x00	0x01	0x32	0x19	sum	

输入电压= 3219mV

5.4.6 读取测量结果

表 5-13 读取测量结果

字节	0	1	2	3	4
名称	首	地址	登记		校验
数据	0xAA	0x80	0x00	0x22	0xA2

类型:读取命令 从地址:0x00 注册地址:0x0022

功能:主读出距离测量结果;

从机回复:

表 5-14 回复测量结果

字节	0	1	2	3	4	5	6:9	10:11	8
					·		Payload	Payload	Check
名称	首	地址	登	记	有效	计算			
							Distance	SQ	sum
数据	OxAA	0x00	0x00	0x22	0x00	0x03	0xAABBCCDD	0x0101	sum

5.4.7 设置模块地址

表 5-15 设置模块地址

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	登	登记		有效计算		有效字节	
数据	0xAA	0x00	0x00	1		0x00 0x01		0x00 0xYY	

类型:写命令 从地址:0x00 注册地址:0x0010

功能:主设从地址,模块断电后该地址不会丢失;

从机回复:

表 5-16 应答集模块地址

字节	0	1	2	3	4	5	6	7	8	
名称	首	地址	登-	登记		有效计算		有效字节		
数据	0xAA	0x00	0x00	0x10	0x00	0x01	0x00	0xYY	sum	

从地址设置为 0xYY (!!!)注意:地址只取位[6:0], 其他位将被忽略)。

!!请注意:不要将从机地址设置为广播地址 0 x7f,这个地址是留给一个主多从网络,需要所有的从机同时测量距离,没有从机应答测量结果,直到主人要求他们中的一个。

5.4.8 设置模块测量偏移量

表 5-17 模块测量偏移量

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	登记		有效计算		有效	校验	
数据	0xAA	0x00	0x00	0x12	0x00	0x01	0xZZ	0xYY	sum

类型:写命令 从地址:0x00 注册地址:0x0012 功能:主从测量偏移量。

例如,如果偏移量 0xZZYY = 0x7B(+123),则为表示测量结果的最终输出将加上 123 毫米,如果偏移 0xZZYY = 0xFF85(-123),表示测量结果的最终输出将减去 123 毫米。

从机回复:

表 5-18 应答集模块地址

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	登记		有效计算		有效	校验	
数据	0xAA	0x00	0x00	0x12	0x00	0x01	0xZZ	0xYY	sum

5.4.9 打开或关闭激光器

表 5-19 打开/关闭激光器或关闭激光器

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	登记		有效计算		有效	校验	
数据	0xAA	0x00	0x01	0xBE	0x00	0x01	0x00	0xZZ	sum

类型:写命令 从地址:0x00 注册地址:0x01BE

函数:打开或关闭激光束,如果 0xZZ = 0x01 激光打开, 0xZZ = 0x00 激光关闭。

从机回复:

表 5-20 打开/关闭激光器

_				-						
	字节	0	1	2	3	4	5	6	7	8
ſ	名称	首	地址	登记		有效计算		有效	校验	
	数据	OxAA	0x00	0x01	0xBE	0x00	0x01	0x00	0xZZ	sum

5.4.10 单次自动测量

5-21 启动单次自动距离测量

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	登记		有效证	十算	有效与	字节	校验
数据	0xAA	0x00	0x00	0x20	0x00	0x01	0x00	0x00	0x21

类型:写命令 从地址:0x00 注册地址:0x0020

功能:启动从机在自动模式下进行单次测量,测量模式请参考 6.5 节。

从机回复:

表 5-20 回复单次自动测量

				.,,,	° - ° -	C 1 0(H-930	13 E		
字节	0	1	2	3	4	5	6:9	10:11	8
							Payload	Payload	Check
名称	首	地址	登	记	有效	计算			
							Distance	SQ	sum
									Check
数据	OxAA	0x00	0x00	0x22	0x00	0x03	0xAABBCCDD	0x0101	
									sum

类型:从机回复 从地址:0x00

注册地址:0x0022

函数:将测量结果回复给主机,测量结果= 0xAABBCCDD 毫米(帧)

byte6 = 0 xaa byte7 = 0 xbb byte8 = 0 xcc byte9 = 0 xdd)和信号质量= 0 x101 更少信号质量

号代表更强的激光信号和更可靠的距离结果。

5.4.11 单次慢速距离测量

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	登	记	有效	计算	有效	字节	校验
数据	OxAA	0x00	0x00	0x20	0x00	0x01	0x00	0x01	0x22

类型:写命令 从地址:0x00

注册地址:0 x0020

功能:启动从机在慢速模式下进行单次测量。

从机回复:与单次自动模式相同。

5.4.12 单次快速距离测量

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	登	记	有效	计算	有效	字节	校验
数据	0xAA	0x00	0x00	0x20	0x00	0x01	0x00	0x02	0x23

类型:写命令 从地址:0x00 注册地址:0x0020

功能:启动从机在快速模式下进行单次测量。

从机回复:与单次自动模式相同。

5.4.13 启动连续自动距离测量

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	登	记	有效	计算	有效	字节	校验
数据	0xAA	0x00	0x00	0x20	0x00	0x01	0x00	0x04	0x25

类型:写命令 从地址:0x00 注册地址:0x0020

功能:启动从机在自动模式下进行连续测量。

从机回复:与单次自动模式相同。

5.4.14 启动连续慢距离测量

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	登	记	有效	计算	有效	字节	校验
数据	0xAA	0x00	0x00	0x20	0x00	0x01	0x00	0x05	0x26

类型:写命令 从地址:0x00 注册地址:0x0020

功能:启动从机慢速连续测量。

从机回复:与单次自动模式相同。

5.4.15 启动连续快速距离测量

字节	j	0	1	2	3	4	5	6	7	8
名称	ĸ	首	地址	登	记	有效	计算	有效	文字节	校验
数排	<u> </u>	0xAA	0x00	0x00	0x20	0x00	0x01	0x00	0x06	0x27

类型:写命令 从地址:0x00 注册地址:0x0020

功能:启动从机在快速模式下进行连续测量。

从机回复:与单次自动模式相同。

5.4.16 从机应答错误

如果在测量阶段出现误差,激光测距仪模块将回复误差报告框:

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	登-	记	有效	计算	有效	字节	校验
数据	0xEE	0x00	0x00	0x00	0x00	0x01	0x00	0x0F	0x10

类型: 从机回复 从地址: 0x00 注册地址: 0x0000

功能:向主机报告错误状态代码,错误代码= 0x000F,请参考第 5.6 条状态

为它的意义编码。

5.4.17 退出连续测量

主传输一个字节 0x58(大写字符' X')立即停止连续测量模式。

5.4.18 启动多从机措施

主机向从地址 0x7F 发送单次测量命令,这将使所有在线从地址都变成 0x7F 同时测量距离,但没有人掌握,直到将返回其测量结果。主机要求每个从机返回测量结果。在主机发出阅读测量结果之前命令时,主服务器应读取从服务器的状态码,以确保在此过程中没有发生错误这个从机测量。

字节	0	1	2	3	4	5	6	7	8
名称	首	地址	登	记	有效	计算	有效	文字节	校验
数据	0xAA	0x7F	0x00	0x20	0x00	0x01	0x00	0x00	0xA0

类型:写命令 从地址:0x00 注册地址:0x0020

功能:启动所有从机在自动模式下进行单次测量

从机回复:没有回复

发送此命令后,如果从服务器应答其状态,则主服务器轮询每个从服务器的地址状态码0x0000,表示没有错误,然后发送 Read measure Result 命令来读取结果距离。每个从服务器的度量结果将不会被覆盖,直到下一个成功的度量命令一个新的距离结果。

5.5 测量模式MeasureModes

测量方式有两种,一种是单次测量,一种是连续测量。

- ①单次对于每一个距离测量请求命令只给出一个测量结果;
- ②连续测量连续回复距离,如果不中断,最多可达 255 次测量周期。为了停止连续测量,主机需要 发送 1 字节 0x58(上部 ASCII 中的大小写字符"X")在测量期间。每个测量模式有 3 个工作模式:
 - a 自动,模块返回测量结果和信号质量(SQ),更少的 SQ 值代表更多可靠的测距结果,在此模 式下模块根据激光反射调整读取速度水平:
 - b 速度慢, 读取距离高, 精度高:
 - c 速度快, 距离读取精度低, 但速度快。

表	6-23	测量方式
<u> </u>		

方式	自动	慢速	快速
模式			,
单词测量	单次自动	单次慢速	单次快速
连续测量	连续自动	连续慢速	连续快速
测量速度	自动	慢	快
测量精度	自动	高	低

5.6 状态码StatusCodes

状态码	描述
0x0000	无错误
0x0001	输入功率过低,功率电压应>= 2.2V
0x0002	内在错误,没关系
0x0003	模块温度过低(< -20℃)
0x0004	模块温度过高(> + 40℃)
0x0005	目标超出射程
0x0006	无效的测量结果
0x0007	背景光太强
0x0008	激光信号太弱
0x0009	激光信号太强
0x000A	硬件故障 1
0x000B	硬件故障 2
0x000C	硬件故障 3
0x000D	硬件故障 4
0x000E	硬件故障 5
0x000F	激光信号不稳定
0x0010	硬件故障 6
0x0011	硬件故障 7
0x0081	无效

六、注意事项 Matters Needing Attention

SK-A100 是一种光学仪器,它的操作会受到环境条件的影响。因此,应用时可达到的测程有所不同,而测距精度则不会受这类因素的影响。下列条件可能对测程造成影响:

6.1 影响因素InfluenceFactor

6.1.1 影响量程的因素

要素	加长测程的因素	缩短测程的因素
目标表面	明亮反射良好的物表,如反射 板	暗淡无光泽的物表,绿色、蓝色 物表
空气微粒	清洁的空气	灰尘、雾、暴雨、暴风雪
日光强度	黑暗环境	目标受到明亮的照射

6.1.2 影响测量精度的原因

(1) 粗糙的表面

在对粗糙表面(如灰泥墙面)进行测量时,对准发亮的区域中心。为避免测量到灰泥接缝深处,请使用目标板或木板。

(2) 表层透明

为了避免测量出错,请不要对着透明物体的表面进行测量,如无色的液体(比如水)或玻璃(无尘),对不熟悉的材质或液体,可先进行试测。

当透过玻璃窗瞄准目标或视线上有几个目标物时,测量会出现错误。

(3) 潮湿、光滑或高光泽的物表

当瞄准角度很小时,激光会被反射掉。这时SK-A100 接收的信号就会太弱,也可能测出反射激光所打到的目标距离;如果瞄准成直角,SK-A100 接收的信号可能会过强。

(4) 斜面、圆面

在目标面积大得足够容纳激光斑点时, 才可以进行测量。

(5) 多路径反射

当从其它物体返回的激光超过目标反射光时,可能会出现错误的测量结果。在测量光路上,请避免各种反射体。

6.2 安全注意事项SafetyPrecautions

以下指导可使 SK-A100 负责人和使用者预先了解操作中可能存在的危险,并加以预防。仪器负责人请确保所有使用者阅读并遵循本说明。

如果SK-A100 是系统的一部分,该系统厂商必须对所有安全相关问题负责,如手册、贴标和指导。

6.2.1 仪器使用

(1) 允许的用途:

SK-A100 允许的使用范围是: 距离测量。

(2) 禁用范围:

未遵循指导而使用仪器

在申明范围外使用

破坏安全系统,去掉说明和危险标志

用工具(如螺丝刀)打开设备

改装或升级仪器

使用未经SENKYLASER 认可的其它厂家的附件

直接瞄准太阳

故意出现其它耀眼的物体, 包括黑暗中

在未设安全设施的测量工地(如在马路上测量等)

警告:

被禁止的使用方法如果使用可能导致人员伤害、仪器故障和损失。仪器负责人有责任告知使用者其危险性和如何防范。在未清楚SK-A100 的使用方法前,不可进行操作。在适合人类生存的条件下使用。不可在易燃易爆的环境中使用。

6.3 责任范围ScopeofLiability

原设备生产商SENKYLASER 的责任:

SENKYLASER 负责提供完全安全条件下的产品,包括本手册、软件和原产附件。 非 SENKYLASER 的附件生产商的责任:

非 SENKYLASER 的附件生产商负责自身产品的开发、可用和安全说明。 他们也要负责与SENKYLASER 产品的安全联机。

6.4 重大使用危险MajorOperationalRisk

警告: 不要将 SK-A100的激光直接指向太阳,否则会损坏仪器; 不要将SK-A100 的激光长时间直接指向人眼,虽然SK-A100 为一类人眼安全激光,长时间直视激光会对人眼造成伤害;

七、联系我们Contact us

微信二维码

网站二维码

上海申稷光电科技有限公司

Shanghai Senkylaser photoelectric technology co. LTD

售后邮箱Emai: <u>service@shsenky.com</u> 销售邮箱Emai: <u>sales@shsenky.com</u>

地址: 上海市虹口区广纪路 838 号 A 栋 501A

Address: 501A, building A, 838 guangji road, hongkou district, Shanghai

邮编 Postcode: 200434

